
Transforming 64-Bit Windows
to Deliver Software-Only
Real-Time Performance

RTX64 WHITE PAPER

RTX64 WHITE PAPER

2kingstar.com kingstarsales@kingstar.com 781.996.4481

ext-generation industrial, vision, medical
and other systems seek to combine high-
end graphics and rich user interfaces with

hard real-time performance, prioritization and
precision.Today’s industrial PCs running 64-bit
Windows, complemented by a separate scheduler
on multicore multiprocessors, can deliver that
precise real-time performance on software-defined
peripherals.

The pace of advancement in silicon integration
and performance continues unabated, driven
by the demands of ever-richer applications. That
advancement, however, has been taking different
directions, especially in the case of the integration
of functionality onto single silicon dies. The task for
the embedded OEM is to decide how to turn these
revolutionary developments into real products that
can provide what customers demand. That now
includes high-definition audio and video, machine
vision, real-time industrial products such as six-axis
motion control, real-time connectivity and a rich
user interface. That user interface often must also
include the ability to present complex real-time
graphical data that is linked to the application in
real-time.

Today’s hardware has that capability, but the way
to realize it is through software. With processor
cores that are powerful enough, there is no
need to rely on custom hardware to implement
specialized functions; that can now be done with
software. Software can be more easily updated
and improved than hardware, and it is here where
OEMs can implement their real value.

The best way to smooth the task of implementing
complex real-time software applications is to start
with the right hardware environment. As noted
above, hardware integration has been taking
different directions. On the one hand, there is a
trend to integrate the kinds of devices used by
real-time systems onto a single die. These might
include a multicore processor, a DSP, an FPGA or

an advanced graphics unit. We have recently seen,
for example, devices that integrate processor cores
and FPGAs, or processor cores with advanced
graphics units that are also capable of intense
number computation such as DSP.

On the other hand, there is the opportunity to tap
into today’s multi-core CPUs, whose tremendous
power and performance is the result of multiple
cores and, to a smaller extent, clock speeds
approaching 3 GHz. These standard commercial
off-the-shelf industrial PCs (IPCs) provide
platforms that, with some additional instructions
and a scheduler, can deliver DSP-level processing,
performance, prioritization and precision. With
today’s CPUs, this processing can be done in
floating point for more diverse calculations than
with the fixed point typically found in a DSP. Such
performance changes the focus from trying to
optimize the use of every instruction to actually
fully exploiting the real power of the multicore IPC.

This trend has already resulted in devices
that can outstrip traditional DSP processors.
Another major development in this arena is the
move to 64-bit architectures that are backward
compatible with their 32-bit predecessors, but
which offer enormously enhanced performance.
This has several advantages, because even a
highly integrated chip with different integrated
functions with their different instruction sets and
protocols throws up obstacles to a unified software
environment, which adds both hardware hurdles
as well as burdens on the development team to
circumvent them.

The all-new implementation of IntervalZero’s RTX64
takes the latter path and transforms Windows into a
fully functional real-time operating system that runs
entirely on x64 multicore hardware. Additionally, in
so doing it provides access to 128 Gbytes of non-
paged memory, depending on actual mapped
physical RAM size. Overall, Windows’ 512 Gbytes
of physical memory dwarfs the 4 Gbytes physical

RTX64 WHITE PAPER

3kingstar.com kingstarsales@kingstar.com 781.996.4481

memory limitation of 32-bit Windows. This vast
amount of available memory opens the door
to previously unavailable applications like MRI
medical imaging and high-end video editing to
name a few.

Above all, RTX64 provides a single commodity
hardware environment in the form of multicore
x64 devices. This enables a single software
environment that can accommodate Windows
with its rich user interface, available applications
and development environment. And Windows
is seamlessly connected to the full-function real-
time symmetric multiprocessing (SMP) RTX64
environment that can scale from 1 to 63 cores.
Applications compile to a single code base with no
need for FPGAs or DSPs to execute logic based on
different code that must be separately compiled
and linked with the main application. One set of
hardware, one operating system environment, one
set of tools and one base of code. That translates
to one team that can communicate and work
together and produce high-performance, scalable
applications while dramatically shortening time-to-
market.

A Liberating Unified Architecture
Freed from the isolation of the real-time system
and from other functions such as the user interface,
OEMs are able to explore more innovative solutions
with less risk and overhead. For example, consider
the user interface. Today’s advanced applications
and their users—are demanding feature-rich,
interactive, touch-activated graphical user
interfaces. Advanced embedded systems are far
beyond the headless systems of yesteryear. In
addition, it is becoming increasingly important to
provide a definitive user experience based on that
interface, one that can help reinforce product
branding.

The old way of developing an embedded user
interface was to have a team design the UI on a
desktop system using a graphics program such
as Photoshop, Illustrator, or perhaps one of the
later tools aimed at embedded systems. The result
would be a prototype UI with simulated data and
interfaces. That would then be handed off to the
team developing the real-time application, and
their task would be to implement the UI design
under whichever RTOS environment they were
using. This inevitably entailed changes and
compromises, and testing that was mostly put off
until late in the development cycle with predictable
effects on time-to-market.

Using RTX64, development teams can build their
UI with whichever Windows-based tools they
choose and be confident that the objects in the
interface can communicate directly with the RTX64
APIs, and exchange commands and data with the
embedded application. Any changes to the UI or to
the embedded functionality can be quickly traced
and updated between the two. The same seamless
access to networking, databases and storage can
be provided for hard real-time applications under
RTX64 because it does not alter Windows in any
way, but is a real-time extension to Windows. Thus
its communications with Windows are seamlessly
integrated and do not depend on mechanisms
like remote procedure calls, virtualization, or
hypervisors that are associated with other
implementations of multiple operating systems.
The addition of a second scheduler and an RTOS
infrastructure allows UI functions to execute in
Windows while real-time functions execute on the
RTX scheduler. Putting the right task on the right
scheduler delivers the best overall result.

RTX64 WHITE PAPER

4kingstar.com kingstarsales@kingstar.com 781.996.4481

RTX64—A Fresh Start into 64-Bit
The new RTX64 was built from the ground up to open the world of 64-bit real-time computing, and it is not
a port of the 32-bit product. Professional audio and video, high-end medical devices along with advanced
industrial control systems that incorporate machine vision and rich user interfaces, all place demands that
can only be met by advanced 64-bit systems that can include the rich user interface possible

RTX64 provides an
architecture that takes

advantage of the advancing
technologies—specifically,

high-speed, multicore
x64—that can outperform

and outscale the traditional
embedded environment that

relies on DSPs, FPGAs and
microcontrollers.

Figure 1

RTX64 provides an architecture that takes advantage of the advancing technologies—specifically, high-
speed, multicore x64—that can outperform and outscale the traditional embedded environment that relies
on DSPs, FPGAs and microcontrollers (Figure 1). It does this by implementing their functions at even higher
performance in a single hardware environment, and it can do this in conjunction with Windows, which
offers the rich user environment and access to a huge number of applications that can take advantage of
and support the real-time operations.

RTX64 WHITE PAPER

5kingstar.com kingstarsales@kingstar.com 781.996.4481

To start with, RTX64 has a hardware abstraction
layer (HAL) that is distinct from the Windows HAL,
but operates alongside it. Thus, from the start,
no modification of Windows is needed. The two
systems operate side-by-side and communicate
via existing mechanisms. The RTX64 HAL can scale
from 1 to 63 cores to deliver deterministic real-time
performance with timing down to 1 μs (dependent
on hardware support). The scheduler, which
resides in the RTX64 real-time subsystem (RTSS),
can assign threads to cores to achieve symmetrical
multiprocessing (SMP) withou relying on virtualization
or complex interprocess communications.

This is also a result of the vast memory space that is
available to all cores without memory partitioning.
Up to 128 Gbytes of non-paged memory and up to
512 Gbytes of physical memory can be accessed
by the entire system. This is a huge advantage for
medical applications that increasingly depend
on visualization such as the Optical Coherence
Tomography (OCT) technology now under
development, or for real-time surgical robots that
depend on accurate rendering and processing of
organ images like a beating heart. It is essential
for advanced industrial control systems that must
not only present visual data to the user, but also
process it in real-time to drive motion control of
tools and also for the inspection of parts produced
by the process.

Having a memory space like this available to such
a high-performance general-purpose hardware
platform allows OEMs to develop specialized
software that can perform extremely specialized
functions that would have otherwise required
specialized hardware components. Experience has
shown that mixing different hardware involves quite
different sets of software that depend on different
disciplines (e.g., C++ vs. Verilog), which not only
greatly slows development time, but also places
limits on performance and scalability. Scaling such
systems only brings increased complexity with
each disparate piece of additional hardware with
its own interfaces and unique software needs.

The RTX64 real-time subsystem (RTSS), which
includes a real-time scheduler, is fully independent
from the Windows kernel and the Windows
scheduler. There is no inherent interaction or
interference of Windows and real-time threads.
Only intended communications between threads
by the developer can occur using the real-time API.
A real-time API is provided for use with user-mode
Windows applications, or a real-time kernel API for
use with Windows kernel drivers.

In scenarios such as those enabled by RTX64,
applications can present themselves to the user
as common Windows applications, while behind
the user interface, many of their features are taking
advantage of RTX64 real-time processes. For
example, a machine tool control program might
present a view of the part being machined along
with controls and settings that the user can access
via a touch screen. However, the actual application
consists of two parts. The Windows program can
communicate with the real-time control program
on two levels—the kernel and the user level—by
means of real-time APIs.

At the kernel level, a Windows driver can send data
to the RTX64 side, which is perhaps controlling
the travel of a tool, and receive current position
data, which it then passes to the user interface, or
subjects to some sort of processing via a real-time
kernel API (RtkApi). At the user level, the operator
can set values or the position of switches, etc., on
the touch screen and these will communicate
with a Windows process. That process in turn uses
the real-time API (RtApi) to communicate with
the RTSS. These two classes of API communicate
directly with the RTSS, which is where the real-time
control program resides.

RTX64 WHITE PAPER

6kingstar.com kingstarsales@kingstar.com 781.996.4481

As the demand for rich user interfaces for
real-time and embedded systems continues
to grow, developers are being faced with the
dilemma of how to link such interfaces with RTOS
environments that are traditionally not designed to
support complex user interfaces. We have already
mentioned the often-awkward tricks that must be
performed to match such an RTOS-based system
to a complex user interface. With the RTX64
extension to Windows, it is straightforward to use
one’s favorite graphical tools to design a user
interface that can link directly to the underlying
real-time application using the RTX APIs. Even
more attractive to some could be the ability to
simply purchase an off-the-shelf software control
and data acquisition (SCADA) tool, which comes
with many pre-designed but customizable gauges,
sliders, switches and representations of pumps,
tanks, actuators, etc., and develop from there using
the same RTX64 APIs to hook up to the system.

The same goes for video data. There is a wide
selection of tools and applications that can
represent physical phenomena, such as heat
distribution, fluid dynamics, stress and more, and
they all run under Windows. Image processing
applications exist that can do edge detection and
other operations needed for parts inspection.
The list goes on. The OEM has, at this level of the
Windows user interface, a rich selection of “build
or buy” options, all of which he can confidently use
and/or experiment with knowing that the interface
to the underlying real-time application is well-
defined and will work out of the box.

RSMP Paves the Way to Performance
and Scalability
There are, of course, different schools of thought
on how to take advantage of multicore processors.
These basically break down into asymmetrical
multiprocessing (AMP), or virtualization and
symmetrical multiprocessing (SMP). One approach
to AMP requires that a copy of the operating
system run on each of the cores. This then requires
assignment of memory to the individual cores
and brings with it the need for interprocess
communications that add to overhead. If one tries
to implement a user interface with Windows the
same inefficiencies apply, requiring interprocess
communications between Windows and multiple
instantiations of RTOSs and memory partitions.
Then try processing (under the RTOS) and
displaying (under Windows) real-time video data in
such a system—involving more IPC—and things clog
up very quickly. Scaling the system to more cores
requires more copies of the RTOS, more memory
partitioning and reconfiguration of the application.

Another approach to AMP is to implement
virtualization with a hypervisor, which is a separate
layer of software running directly on the hardware
that divides the hardware among the operating
systems (Figure 2). Some multicore processors even
have built-in hardware assistance for virtualization,
which basically presents a virtual “motherboard” to
each operating system. Virtualization is often used
to support “separation kernels,” which are isolated
from the rest of the system, communicating only
via tightly controlled mechanisms and protocols.
This can be useful in certain cases, but its goal is
isolation, whereas the goal of SMP is integration.

Another approach to AMP is to implement
virtualization with a hypervisor, which is a
separate layer of software running directly
on the hardware that divides the hardware
among the operating systems.

Figure 2

RTX64 WHITE PAPER

7kingstar.com kingstarsales@kingstar.com 781.996.4481

RTX64 represents a real-time operating system extension to Windows and works with Windows as a single
operating system environment that uses the SMP approach to treat the multiprocessor hardware as a
single shared resource. It requires only a single copy of the entire operating system environment including
the real-time subsystem with its real-time scheduler that has access to all cores assigned to the subsystem
(Figure 3). Unlike with AMP, the code can be written once and can be later scaled as functions are added
by statically reassigning threads or adding cores and repartitioning. Since all the cores, and hence all the
threads, have direct access to shared data and all resources are visible to all real-time processes, there is
no need for additional copies or the use of complex interprocess communications schemes or remote
procedure calls.

The ability to use a single extended operating
system environment across a homogenous
hardware platform reduces the OEM’s major
hardware decision to, “Do I have enough cores to
do what I need to do?” or, “How many more cores
do I need to add in order to scale this application
to the additional functionality I need?” It no longer
involves bridging interfaces between disparate
hardware elements like FPGAs and DSPs, or
adapting code to parts with increased performance
but different programming needs. It no longer
involves bringing in different hardware specialists
to create or upgrade a product. The team defines
the performance in terms of a single programming
language like C++.

This leads to the additional advantage of having a
single set of development tools, such as Windows
Visual Studio, for the entire project. Windows
serves as the development environment for the
entire system—Windows functions as well as real-
time coding. Other Windows-based tools can be
brought into the mix as well, such as requirements
analysis, version control or static analysis tools
to name a few. The user mode of the real-time
subsystem also includes an RTX64 server console
that connects to the RTSS. The real-time crew
can also use their favorite real-time debuggers,
profilers and analyzers to tweak the real-time
subsystem. They can all communicate
and consult with each other in the same terms.
Nobody has to learn Verilog or a DSP coding
language.

RTX64 represents a real-
time operating system

extension to Windows and
works with Windows as a

single operating system
environment that uses the
SMP approach to treat the

multiprocessor hardware
as a single shared resource.

Figure 3

RTX64 WHITE PAPER

8kingstar.com kingstarsales@kingstar.com 781.996.4481

Connectivity—Internet and Real Time
With the rise of the Internet of Things, connectivity
has become a must have in terms of linking devices
to local networks, then to servers and ultimately
to the Cloud. Internet connectivity is simply a
given with Windows, and it can be customized to
exchange data and commands with the real-time
processes as well as provide for a remote user
interface for interacting with the systems from
virtually anywhere. However, the Windows Internet
connection itself is not real-time.

Yet with the same systems running Windows and
the RTX64 real-time extension environment, it is
possible to add real-time Ethernet connectivity
in the form of EtherCAT, which is an Ethernet-
based fieldbus system for control automation
technology (CAT) as shown in Figure 4. EtherCAT
also provides for gateways to integrate existing
fieldbus components such as CANopen or
Profibus. EtherCAT runs under RTX64 in software
without the need for any specialized EtherCAT
card plugged into the system bus. Running on one
or more processor cores, EtherCAT communicates
directly with whatever network interface chip (NIC)
is used in the system. The individual device can be
selected during EtherCAT configuration.

EtherCAT represents an attractive alternative to
the often complex and expensive wiring schemes
associated with industrial control systems. A single
cable can carry multiple control channels along

with safety signals with Safety Inspection Level
(SIL) 3 certification. In addition, multiple cores can
be dedicated to EtherCAT functionality for truly
rich control connectivity, all without the expense
and power consumption of additional specialized
hardware.

IntervalZero’s RTX64 has opened the world to
Windows-based real-time systems with high-end
vision, visualization and rich user interfaces. It has
done this by giving the developer the ability to
transform the functions of hardware components
into software components by harnessing the power
of the underlying multicore processing hardware.
For the OEM, there is nothing to inventory and the
parts can be replicated infinitely. For the software
team, there is no need for specialized knowledge
of hardware such as DSPs and FPGAs. The code
exists in a unified code base and can be managed
as such.

RTX64 integrates seamlessly into the Microsoft
Visual Studio Integrated Development Environment,
and deploys to a single integrated Windows
system. It extends Windows, delivering hard real-
time precision with bounded latency, and it does
so with multicore processors as a scalable natively
SMP-enabled solution. Its positive effects on cost,
time-to-market, inventory, user experience and raw
system performance are revolutionary.

EtherCAT provides for
gateways to integrate existing

fieldbus components such
as CANopen or Profibus.

EtherCAT runs under RTX64 in
software without the need for

any specialized EtherCAT card
plugged into the system bus.

Figure 4

